# <u>ר</u>וך IUPUI



Figure 3. The general structures of barbiturates (left) and alkyl MPAs (right).

# **Negative Ion Paper Spray for the**

### <sup>1</sup>Indiana University – Purdue University Indianapolis (Indian

- MS/MS inclusion list
- evaporation before spraying



Figure 4. The Velox 360 PS source attached to a Q-Exactive Focus MS.



Figure 5. PS-MS and -MS/MS of a discharging sample of ibuprofen. At 0.45 min, the spray began to more intensely discharge, significantly decreasing the intensity of ibuprofen's precursor ion (thereby eliminating virtually all MS/MS signal from ibuprofen's fragment ion) and increasing the relative strength of CO<sub>3</sub><sup>-</sup> and NO<sub>3</sub><sup>-</sup>—two ions which are produced in negative corona.<sup>4</sup>

## Josiah McKenna<sup>1</sup>; Trevor Gl

### **Methods**

 Prosolia's automated Velox 360 PS source was used with a Thermo Q-Exactive Focus orbitrap MS, operating at 4.0 kV in negative ion mode and acquiring based on an

• The optimized solvent to avoid discharge was 90:10:0.01 methanol:CCl<sub>4</sub>:NH<sub>4</sub>OH, applied with a large delay in the pump programming to prevent excessive

- Eight barbiturates were quantitated down to 500 ng/mL in blood samples using phenobarbital-d5 as an internal standard (ISTD)
- Butabarbital, butalbital, amobarbital, pentobarbital, phenobarbital, secobarbital, thiopental, and phenytoin
- Five alkyl MPAs were quantitated down to 1.25 ng/mL in blood and urine samples using their corresponding stable isotope labeled ISTDs
  - Ethyl MPA (EMPA), isopropyl MPA (IMPA), isobutyl MPA (iBuMPA), cyclohexyl MPA (CHMPA), and pinacolyl MPA (PinMPA)

### Results



## **Detection of Acidic Compounds**

## aros<sup>2</sup>; Nicholas E. Manicke<sup>1</sup> apolis, IN); <sup>2</sup>US Army ECBC (Aberdeen Proving Ground, MD)







| Result | <u>S</u> |
|--------|----------|
|        |          |

| ary of the calibration curves generated for each analyte. |             |                         |                |  |
|-----------------------------------------------------------|-------------|-------------------------|----------------|--|
| Cal. [ng/mL]                                              | LOD [ng/mL] | Rel. Error in Slope [%] | R <sup>2</sup> |  |
| 500                                                       | 229         | 3                       | 0.99           |  |
| 500                                                       | 263         | 4                       | 0.98           |  |
| 500                                                       | 321         | 5                       | 0.97           |  |
| 500                                                       | 561         | 8                       | 0.94           |  |
| 1000                                                      | 502         | 4                       | 0.98           |  |
| 500                                                       | 286         | 4                       | 0.98           |  |
| 2000                                                      | 1100        | 4                       | 0.98           |  |
| 1000                                                      | 919         | 7                       | 0.95           |  |
| 1.25                                                      | 1.2         | 2                       | 0.994          |  |
| 1.25                                                      | 0.9         | 2                       | 0.997          |  |
| 1.25                                                      | 0.9         | 1                       | 0.996          |  |
| 1.25                                                      | 0.8         | 1                       | 0.998          |  |
| 1.25                                                      | 0.5         | 1                       | 0.995          |  |
| 1.25                                                      | 1.2         | 3                       | 0.982          |  |
| 1.25                                                      | 1.2         | 2                       | 0.994          |  |
| 1.25                                                      | 1.1         | 2                       | 0.996          |  |
| 1.25                                                      | 0.6         | 1                       | 0.999          |  |
| 1.25                                                      | 0.4         | 1                       | 0.998          |  |
|                                                           |             |                         |                |  |