Paper Spray Mass Spectrometry for Screening Christine Skaggs Department of Chemistry and Chemical Biology

OVERVIEW

PURPOSE: To develop a proper methodology to allow health care providers to properly determine drug dosage for individual patients.

METHODS: Serum samples spotted on chromatography paper and analyzed via paper spray

RESULTS: There is no difference in samples between different patients for this method.

INTRODUCTION

- Difficult to determine the correct drug dosage for individual patients
- Environmental and external factors cause variation • Paper spray ionization is fast, accurate, and reproducible.
- Uses low sample and solvent volume
- Paper spray MS/MS method for analysis of four anti-fungal drugs
- Treat fungal infections in immunocompromised patients

METHODS

- Monitored in serum
- Spiked with an internal standard containing stable isotope labeled analogs of the drugs.
- Spotted onto Whatman 31ET chromatography paper and allowed to dry.
- Dried serum spots were analyzed via paper spray using 90-10-0.01 acetonitrile-wateracetic acid.
- Extract the drug of interest.
- Experiments were performed on a Thermo TSQ Vantage.

Figure 1: Autosampler for TSQFigure 2: Paper Spray Cartridge

Pos
Itra
Vor
Flu
Itrac
Voric
Fluco

Relative Abundance	100 95 90 85 80 75 70 65 60 55 50 45 40 35 20 15 10 5 0	33
Relative Abundance	100 95 90 85 80 75 70 65 60 55 40 35 30 25 20 15 10 5 0	169 1
Relative Abundance	00 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 0	224

for calibration curve.

of Antifungal Drugs from Plasma Samples and Nick Manicke Indiana University-Purdue University Indianapolis

ULTS

Figure 7: Control charts depicting the repeatability and reproducibility of paper spray for the individual human samples from the calibration curve.

CHROMATOGRAM OVERLAY OF FLUCONAZOLE FOR EACH LOT

Figure 8: Overlay of calibration curve chromatograms for each human sample for the drug Fluconazole depicting the consistent linearity of the curves for each lot.

Sample Number	Drug	R^2	Slope	LOD (ng/mL)
Lot 1	Fluconazole	1.00	0.32	0.05
Lot 2	Fluconazole	1.00	0.31	0.06
Lot 3	Fluconazole	1.00	0.29	0.12
Lot 4	Fluconazole	1.00	0.31	0.03
Lot 5	Fluconazole	1.00	0.32	0.06
Lot 6	Fluconazole	1.00	0.32	0.06
Lot 7	Fluconazole	1.00	0.32	0.10
Lot 1	Itraconazole	0.99	5.45	0.03
Lot 2	Itraconazole	0.98	5.27	0.05
Lot 3	Itraconazole	0.98	4.83	0.05
Lot 4	Itraconazole	0.99	5.15	0.03
Lot 5	Itraconazole	0.99	5.18	0.03
Lot 6	Itraconazole	0.99	5.18	0.03
Lot 7	Itraconazole	0.99	5.37	0.03
Lot 1	Posaconazole	0.99	2.71	0.03
Lot 2	Posaconazole	0.99	2.30	0.04
Lot 3	Posaconazole	0.98	2.14	0.04
Lot 4	Posaconazole	0.99	2.50	0.03
Lot 5	Posaconazole	0.99	2.47	0.04
Lot 6	Posaconazole	0.99	2.47	0.04
Lot 7	Posaconazole	1.00	2.49	0.02
Lot 1	Voriconazole	1.00	5.07	0.00
Lot 2	Voriconazole	1.00	4.97	0.01
Lot 3	Voriconazole	1.00	4.51	0.02
Lot 4	Voriconazole	1.00	4.83	0.01
Lot 5	Voriconazole	1.00	5.05	0.01
Lot 6	Voriconazole	1.00	5.05	0.01
Lot 7	Voriconazole	1.00	5.07	0.02

Table 2: Summarized calibration curve information for each human sample.

LOD Across Seven Donors

Target	%CV of Slope	Average LOD Across 7 donors (ng/mL)	Therapeutic range
Fluconazole	3%	69	$4-20 \mu \mathrm{g/mL}$
Itraconazole	4%	37	>500 ng/mL (local infection) >1000 ng/mL (systemic infection)
Posaconazole	10%	31	~ 1 μ g/mL (trough)
Voriconazole	4%	13	~ 1 μ g/mL (steady-state)

Table 3: LOD showing that each drug is below the therapeutic range $(1 \ \mu g/mL).$

Variation of Slope and Detection Limits

Target	LOD (ng/mL)	Min LOD (ng/mL)	Max LOD (ng/mL)	LOD RSD
Fluconazole	69	32	117	43%
Itraconazole	37	27	50	21%
Posaconazole	31	18	43	27%
Voriconazole	13	3	21	44%

Table 4: Variation of detection limits for each drug across 7 lots of plasma.

METABOLITE INTEREFERENCES

HPLC Separation of Posaconazole Glucuronide Standard

Time (min) Figure 10a: Extracted ion chromatograms of m/z 701 (top) and m/z 877 (bottom)

Figure 11: Full MS of voriconazole-n-oxide (m/z 366). Contribution to intact drug (m/z 350) appears negligible.

Figure 10b: Ratio between intact glucuronide metabolite and parent drug at 61 minutes. Interference is < 3%.

CONCLUSIONS

There is no significant difference between different human samples making paper spray a good, reproducible method.

Future studies:

Further work can be done to explore metabolites of the antifungal drugs in order to determine the limitations of this method due to interference from these metabolites.

We can also evaluate the performance of the paper spray MS method by comparing the results to a clinical laboratory reference method.

Matrix Effects can also be investigated to determine their impact on the paper spray methodology as a whole.

REFERENCES

[1] Espy RD, Manicke NE, Ouyang Z, Cooks RG. Rapid analysis of whole blood by paper spray mass spectrometry for point-of-care therapeutic drug monitoring. Analyst. 2012;137:2344-9. [2] Manicke NE, Abu-Rabie P, Spooner N, Ouyang Z, Cooks RG. Quantitative Analysis of Therapeutic Drugs in Dried Blood Spot Samples by Paper Spray Mass Spectrometry: An Avenue to Therapeutic Drug Monitoring. Journal of the American Society for Mass Spectrometry. 2011;22:1501-7. [3] Manicke NE, Yang Q, Wang H, Oradu S, Ouyang Z, Cooks RG. Assessment of paper spray ionization for quantitation of pharmaceuticals in blood spots. International Journal of Mass Spectrometry. 2011;300:123-9. [4] Wang, H., Liu, J., Cooks, R., & Ouyang, Z. (2010). Paper Spray for Direct Analysis of Complex Mixtures Using Mass Spectrometry. Angewandte Chemie, 122(5), 889-892. doi:10.1002/ange.200906314 [5] Wang H, Ren Y, McLuckey MN, Manicke NE, Park J, Zheng LX, Shi RY, Cooks RG, Ouyang Z. Direct Quantitative Analysis of Nicotine Alkaloids from Biofluid Samples using Paper Spray Mass Spectrometry. Analytical Chemistry. 2013;85:11540-4.

ACKNOWLEDGEMENTS

We would like to thank the Indiana University-Purdue University Indianapolis Department of Chemistry for allowing us to perform these experiments.

