

The Detection of Designer Drugs from Plasma via Paper Spray Mass Spectrometry Cartridge Greta J. Ren, Nicholas E. Manicke

Overview

- Designer drugs are not detected by routine drug screens and are more potent than traditional drugs
- A method to detect designer drugs at sub-ng/mL levels was developed and validated using paper spray mass spectrometry with an integrated solid phase extraction cartridge
- 33 suspected overdose plasma samples were analyzed and several designer drugs were successfully detected. Results were compared to the screening results from a toxicology lab

automatable

Figure 2: Paper spray analysis

- Cartridge equipped with solid phase extraction (SPE) column can perform analyte pre-concentration and ionization
- SPE improves detection limits by allowing larger sample volumes to be used, removing matrix interferences and pre-concentrating the analyte

- 1. Sample is loaded at the top of the solid phase extraction (SPE) column and allowed to wick through
- 2. Water is added to the top of the cartridge to help remove matrix components
- 3. The cartridge is covered and allowed to dry
- 4. Cartridge is positioned in front of the MS inlet and spray solvent is added to the top to extract the analytes
- . Voltage is applied to the cartridge, and signal is collected for 3 minutes

Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis

- Cartridges were 3D printed with Ultimaker 2 Extended+
- Mass spectrometry analysis was performed using Thermo Q-Exactive Focus
- Non-targeted MS/MS mode using 7 m/z wide isolation window (34 windows 150-436 m/z) with stepped collision energy of 25, 35 and 65 eV

Data Analysis:

- Data analysis was performed using TraceFinder 3.3
- In-house library was created with 300+ compounds, including new synthetic drugs and traditional drugs of abuse
- At least two fragment ions must be detected within 5 ppm m/z window

Results

Figure 5: Calibration curves for selected designer and "classic" drugs

Calibration Curves

Limits of Detection

Analyte	LOD (ng/ mL)	Rel. Error Slope	R ²	Analyte	LOD (ng/ mL)	Rel. Error Slope	R ²	Analyte	LOD (ng/ mL)	Rel. Error Slope	R ²
SYNTHETIC C	ANNA	BINO.	IDS	THJ-2201	0.50	3.3%	0.980	MDPV	0.5	1.8%	1.0
5F-ADB	0.10	1.9%	0.987	XLR-11	0.30	1.7%	0.989	Methylone	1	4.2%	0.9
5F-PB-22	0.10	4.0%	0.945	FENTANYL	ANAL	OGUE	S	OTHER NPS			
AB-CHMINACA	0.30	1.1%	0.996	Acetyl Fentanyl	0.05	2.1%	1.0	25I-NBOMe	2	3.4%	1.0
AB-FUBINACA	0.10	3.2%	0.966	Carfentanil	0.05	2.5%	1.0	Benzylpiperazine	25	4.0%	0.9
AB-PINACA	0.30	1.9%	0.988	Cyclopropyl fentanyl	0.25	2.2%	1.0	Etizolam	1	2.6%	1.0
ADB-FUBINACA	0.1	3.9%	0.945	Fentanyl	0.05	2.3%	1.0	TRADITIONAL DRUGS		RUGS	
AM-2201	0.10	2.7%	0.976	FIBF	0.3	1.8%	1.0	Alprazolam	0.5	2.2%	1.0
AMB-FUBINACA	0.1	2.3%	0.981	Furanyl Fentanyl	0.1	3.3%	1.0	Cocaine	2.25	0.8%	1.0
JWH-018	0.10	2.8%	0.974	Remifentanyl	0.05	2.6%	1.0	Heroin	1	1.8%	1.0
JWH-200	0.10	3.2%	0.967	U-47700	0.03	1.4%	1.0	Ketamine	1	2.3%	1.0
JWH-250	0.30	1.8%	0.989	CATHINONES			LSD	0.3	2.1%	1.0	
MMB-CHMICA	0.50	4.1%	0.941	α- PVP	5	2.5%	1.0	Methamphetamine	20	4.3%	0.9

Table 1: Limits of detection for the calibrators

Bias and Precision

Analyte		Bias		Intr	aday Varia	tion	Interday Variation		
	QC _{Low}	QC _{Medium}	QC _{High}	QC _{Low}	QC _{Medium}	QC _{High}	QC _{Low}	QC _{Medium}	QC _{High}
SYNTHETIC CANNABINOIDS									
5F-ADB	-4.5%	4.0%	14.3%	29.6%	14.2%	22.0%	8.9%	12.9%	5.5%
5F-PB-22	6.2%	-17.3%	4.2%	29.2%	17.7%	41.7%	7.9%	2.4%	26.5%
AB-CHMINACA	-0.7%	2.6%	2.9%	39.0%	4.5%	8.7%	4.4%	4.6%	4.4%
AB-FUBINACA	1.3%	-14.5%	-4.7%	25.4%	17.6%	25.9%	21.2%	19.9%	6.6%
AB-PINACA	5.0%	-3.0%	9.9%	27.2%	15.8%	15.8%	8.8%	25.2%	15.8%
ADB-FUBINACA	13.0%	-5.9%	7.6%	29.0%	25.7%	22.9%	5.5%	15.1%	12.1%
AM-2201	8.9%	9.1%	12.8%	25.9%	15.9%	11.8%	11.9%	14.8%	7.8%
AMB-FUBINACA	24.0%	0.6%	1.3%	32.9%	21.8%	20.6%	4.9%	11.4%	14.0%
JWH-018	-0.1%	7.6%	4.3%	18.4%	14.2%	17.1%	12.4%	17.4%	8.0%
JWH-200	21.2%	-12.2%	6.6%	35.5%	22.4%	31.7%	21.1%	32.5%	28.4%
JWH-250	-3.2%	5.6%	4.9%	21.4%	11.8%	17.7%	14.9%	8.4%	7.2%
MMB-CHMICA	6.3%	-16.1%	0.1%	13.7%	18.9%	21.0%	5.8%	28.4%	19.3%
THJ-2201	-0.6%	12.5%	0.7%	37.7%	21.8%	33.6%	16.3%	14.6%	18.6%
XLR-11	10.7%	-12.4%	4.3%	21.2%	13.7%	11.5%	15.8%	14.2%	15.7%
			FENTAN	YL ANALO	OGUES				
Acetyl Fentanyl	11.1%	1.5%	3.6%	26.1%	10.1%	16.0%	14.6%	13.6%	6.3%
Carfentanil	5.7%	-9.7%	1.9%	32.2%	26.8%	16.9%	11.5%	17.4%	12.8%
Cyclopropyl fentanyl	24.2%	11.3%	16.9%	27.6%	7.9%	14.3%	4.2%	5.8%	3.4%
Fentanyl	6.7%	10.7%	8.2%	29.0%	9.8%	14.4%	16.9%	13.3%	9.8%
FIBF	-6.3%	-1.4%	6.6%	35.8%	14.2%	13.4%	51.7%	12.3%	8.4%
Furanyl Fentanyl	10.7%	3.0%	1.5%	30.0%	23.9%	21.4%	12.9%	44.8%	22.0%
Remifentanyl	-4.2%	4.1%	-5.2%	26.6%	13.2%	23.6%	9.8%	13.4%	14.0%
U-47700	0.0%	-5.8%	6.4%	12.0%	11.4%	8.2%	8.0%	15.2%	9.7%
CATHINONES									
α- PVP	7.7%	2.4%	6.0%	16.8%	13.8%	22.3%	17.6%	7.4%	8.6%
MDPV	9.4%	6.1%	1.5%	20.9%	12.1%	22.0%	18.6%	5.2%	4.2%
Methylone	20.9%	9.7%	1.9%	23.1%	26.8%	33.1%	9.2%	13.6%	10.8%
OTHER NEW PSYCHOACTIVE SUBSTANCES									
25I-NBOMe	9.7%	-16.7%	6.6%	14.7%	17.7%	23.8%	11.5%	21.6%	10.4%
Benzylpiperazine	19.1%	-10.6%	6.7%	30.1%	46.8%	49.2%	7.1%	33.4%	58.3%
Etizolam	4.2%	3.5%	-1.7%	16.0%	20.4%	16.9%	4.0%	8.6%	4.9%
TRADITIONAL DRUGS									
Alprazolam	3.8%	2.2%	2.6%	18.4%	9.5%	8.5%	23.2%	4.7%	5.8%
Cocaine	8.5%	7.1%	5.5%	14.6%	2.2%	7.6%	2.3%	0.6%	2.1%
Ketamine	6.7%	9.6%	-8.9%	26.1%	16.7%	23.5%	6.6%	27.2%	10.3%
LSD	14.9%	-0.7%	13.2%	19.7%	15.5%	18.6%	10.3%	30.1%	3.3%
Methamphetamine	7.1%	-7.2%	-0.5%	14.8%	15.8%	29.6%	10.1%	13.3%	14.5%

Table 2: Bias and Precision were evaluated over a five day period, and at least three replicates were run for each QC

Relative Matrix Effects

Figure 6: Relative Matrix Effects for calibrators. Calibration curves were prepared in ten individual donor plasma samples. Variation of the calibration curve slopes were used to evaluate relative matrix effects.

Ion Suppression

Figure 7: Ion Suppression for ISTDs. Ion suppression was measured at three different QC concentrations in triplicate

Suspected Overdose Samples

- Suspected overdose samples were **Toxicology Lab Results** collected from two local emergency departments
- To date, 32 suspected overdose samples were analyzed, and more will be analyzed in the near future

Paper Spray Results

- 31/32 samples tested positive for a least one drug
- 30/32 samples tested positive for more than one drug
- 84 unique drugs were detected Methamphetamine (12), Fentanyl (10), Lorazepam (8) were most commonly detected drugs

- Only one class of compounds could be tested due to small sample volume Several synthetic cannabinoids. cathinones, tryptamines and fentanyl analogues were not screened for

No false negatives

- 19 False positives were detected 10 drugs were detected were
- below the Toxicology lab's cut off levels
- 9 drugs were detected due to interference

Drug Class	Detected in # Samples			
Synthetic	15			
Cannabinoids				
Benzodiazapines	12			
Methamphetamine	12			
Opiates	12			
(non-fentanyl)				
Fentanyl	11			
Fentanyl analogues	8			
Cathinones	8			
Cocaine	5			
Tryptamines	3			
NBOMe	1			

Table 3: Number of times a drug class was found in a unique sample

Conclusions

- A method was developed, optimized and validated for detection of designer drugs in plasma with paper spray mass spectrometry
- The presented method allows for rapid, sensitive (sub ng/mL) detection of designer and "classical" drugs with minimal sample preparation and no chromatography
- Method successfully identified designer and "classic" drugs in multiple clinical samples, and the results were confirmed by an independent forensic toxicology lab

References

. Shi, R. Z., El Gierari, E. T. M., Manicke, N. E. & Faix, J. D. Rapid measurement of tacrolimus in whole blood by paper spray-tandem mass spectrometry (PS-MS/MS). Clin. Chim. Acta 441, 99–104 (2015).

2. Zhang, C. & Manicke, N. E. Development of a Paper Spray Mass Spectrometry Cartridge with Integrated Solid Phase Extraction for Bioanalysis. Anal. Chem. 87, 6212–6219 (2015).

Acknowledgments

- Funding from NIH National Institute on Drug Abuse 1R21DA043037-01
- Authors also acknowledge funding and other support from Thermo Scientific